0040-4020(95)00043-7 # Ingenamine Alkaloids Isolated from the Sponge Xestospongia Ingens: Structures and Absolute Configurations Fangming Kong and Raymond J. Andersen* Departments of Chemistry and Oceanography University of British Columbia Vancouver, British Columbia Canada V6T 1Z1 Abstract: Five new minor ingenamine alkaloids have been isolated from extracts of the sponge X. ingens collected in Papua New Guinea. The structures of the new metabolites were solved via spectroscopic analysis. Mosher ester methodology has been used to determine the absolute configurations of ingenamine (1), ingamine A (2) and ingenamine E (11). The results show that the 'ingenamine' alkaloids isolated from X. ingens are antipodal to the manzamines. Ingenamine (1), 1 ingamine A (2) and ingamine B (3) 2 are metabolites of the sponge Xestospongia ingens that represent the first reported examples of the new 'ingenamine' family of cytotoxic sponge alkaloids. Keramaphidin B (4), 3 isolated from an Amphimedon sp., and xestocyclamines A and B^{4,5}, isolated from a Xestospongia sp., are additional 'ingenamine' alkaloids whose structures have also been described. Interestingly, the existence of the 'ingenamine' alkaloids was anticipated by Baldwin and Whitehead in their elegant proposal for the biogenetic origin of the manzamines (Scheme 1). Their proposal suggested that a bis-3-alkyldihydropyridine macrocycle undergoes the biological equivalent of a [4 + 2] cycloaddition reaction to give an initial pentacyclic intermediate. Redox exchange between the two piperidine rings in the pentacyclic intermediate leads to an iminium salt that upon hydrolysis produces a new tetracyclic aldehyde intermediate. Condensation of the aldehyde with tryptamine generates the manzamine skeleton. Ingenamine (1), keramaphidin B (4) and xestocyclamine A have skeletons that are identical to the skeleton of the pentacyclic intermediate in Baldwin and Whitehead's proposal, and ircinal B (5), 7 isolated from an Amphimedon sp., has the overall skeleton and aldehyde functionality present in their tetracyclic intermediate. The discovery of the ingenamines and the ircinals has provided strong support for Baldwin and Whitehead's proposed biogenetic pathway to the manzamines. If the 'ircinal' and 'ingenamine' alkaloids are produced by the same biosynthetic manifold as the manzamines, as suggested by the Baldwin and Whitehead proposal, it is reasonable to expect that all three families of alkaloids would have the same absolute configurations. Indeed, ircinals A and B (5) were shown by chemical correlation to have the same configuration as manzamines A and B (6). However, two recent reports suggest that the situation might be more complex than anticipated. Keramaphidin B (4), whose structure was determined by x-ray diffraction analysis, was reported to be a naturally occurring racemate, and ircinols A and B (7) were found to be antipodal to the corresponding ircinals (e.g. 5) and manzamines (e.g. 6) obtained from the same sample of sponge. The Papua New Guinea sponge X. ingens is an extremely rich source of novel alkaloids. 1,2,9 We have undertaken a thorough examination of all the minor components present in the extracts of X. ingens, resulting in the identification of five new alkaloids, ingenamines B (8) to F (12), whose structures are described below. Baldwin and Whitehead's proposal (Scheme 1) suggests that the ingenamine alkaloids are generated by the same biosynthetic manifold that produces the ircinols and the manzamines. In an attempt to shed further light on the stereochemical features of this interesting biosynthetic manifold, we have utilized Mosher ester methodology 10 to determine the absolute configurations of ingenamine (1), ingamine A (2) and ingenamine E (11). The results of the Mosher ester analyses are also presented below. Examination of the NMR data (Tables 1 and 2) obtained for the minor X. ingens alkaloids revealed that ingenamines B, C and D had hydroxylated tricyclic cores (N1 to C12) and eight carbon N1 to C7 bridges that were identical to those previously identified in ingenamine (1). The COSY, HMOC, HMBC and difference NOE data obtained for compounds 8, 9 and 10 were in complete agreement with these partial assignments. Ingenamine B (8) gave a parent ion in the EIHRMS at m/z 410.3299 appropriate for a molecular formula of C₂₇H₄₂N₂O. Subtraction of the atoms present in the already identified tricyclic core and N1 to C7 bridge (C₁₈H₂₆N₂O) from the molecular formula of ingenamine B (8) indicated that the C3 to N11 bridge contained nine carbons and one alkene functionality. The ¹³C NMR data obtained for 8 (Table 1) showed that all of the nine carbons in the bridge were aliphatic methylene or olefinic methines, which required a linear chain, HMBC, HMQC and COSY data located the olefinic functionality in the bridge at C27/C28, and the 13C chemical shift of C26 (δ 26.3)^{2,9} along with the observation of 10.8 Hz coupling between H27 and H28 indicated that the olefin had the Z configuration. Ingenamine C acetate (9) gave a parent ion in the EIHRMS at m/z 452.3406 appropriate for a molecular formula of C₂₉H₄₄N₂O₂, indicating that the parent metabolite, ingenamine C, was isomeric with ingenamine B (8). Analysis of the ¹³C, COSY, HMQC and HMBC data for ingenamine C acetate (9) showed that it contained a linear nine carbon C3 to N11 bridge with a Z alkene between C24 and C25. Ingenamine D (10) gave a parent ion in the EIHRMS at m/z 422.3292 appropriate for a molecular formula of C₂₈H₄₂N₂O. Subtraction of the atoms present in the tricyclic core and N1 to C7 bridge (C₁₈H₂₆N₂O) from the molecular formula of ingenamine D (10) indicated that the C3 to N11 bridge contained ten carbons and two alkene functionalities. The ¹³C NMR data for 10 once again indicated a linear ten carbon C3 to N11 bridge and the HMBC, HMQC and COSY data located the two alkenes between C24 and C25 and between C27 and C28. The chemical shifts of the C23 (\delta 26.8), C26 (\delta 26.9) and C29 (\delta 25.8) allylic carbons were consistent with the Z configuration for both of the $\Delta^{24,25}$ and $\Delta^{27,28}$ alkenes. 2,9 8 X= OH,Y = $$\frac{11}{21}$$ $\frac{22}{23}$ $\frac{24}{25}$ $\frac{26}{27}$ $\frac{29}{28}$ $\frac{13}{3}$ $\frac{11}{3}$ $\frac{1$ Ingenamine E (11) gave a parent ion at m/z 448.3458 in the EIHRMS appropriate for a molecular formula of C₃₀H₄₄N₂O. Examination of the NMR data for 11 (Tables 1 and 2) revealed that it contained a hydroxylated tricyclic core (N1 to C12) and eight carbon C3 to N11 bridge (C21 to C28 in ingenamine; C25 to C32 in ingenamine E) that was identical to that present in ingenamine (1). The COSY, HMQC, HMBC and difference NOE data obtained for compound 11 were in complete agreement with this partial assignment. Subtraction of the atoms present in the tricyclic core and C3 to N11 bridge (C18H26N2O) from the molecular formula of ingenamine E (11) indicated that the N1 to C7 bridge contained twelve carbons. The 13C NMR data obtained for ingenamine E (11) (Table 1) showed that the bridge contained six aliphatic methylene and six olefinic methine carbons, which required a linear chain with three alkene functionalities. HMBC, HMQC and COSY data identified $\Delta^{15,16}$, $\Delta^{18,19}$ and $\Delta^{21,22}$ alkenes and the ¹³C chemical shifts of the C14 (δ 29.5), C17 (27.2), C20 (\delta 26.8) and C23 (\delta 22.9) allylic carbons were consistent with the Z configuration for all three alkenes. 2,9 Ingenamine F (12) gave a parent ion in the EIHRMS at m/z 432.3497 appropriate for a molecular formula of C₃₀H₄₄N₂ that differed from the molecular formula of ingenamine E (11) only by the absence of an oxygen atom. Comparison of the NMR data obtained for ingenamine F (12) (Tables 1 and 2) with the NMR data for ingamine B (3)² and keramaphidin B (4) (see Experimental) showed that ingenamine B (12) contained the same non-hydroxylated tricyclic core (N1 to C12) found in 3 and 4. Further comparison of the ingenamine F (12) NMR data (Tables 1 and 2) with that obtained for ingenamine E (11) showed that the N1 to C7 and C3 to N11 bridges were identical in both molecules. The COSY, HMQC, HMBC and difference NOE data obtained for ingenamine F were completely consistent with the proposed structure 12. The methanol extract of X. ingens also yielded keramaphidin B (4), which was shown by NMR and mass spectrometric analysis (see Experimental) to have the same constitution and relative configuration as the original sample isolated from Amphimedon.³ Interestingly, the keramaphidin B (4) isolated from X. ingens was optically active, having an $[\alpha]_D = +29.8^{\circ}$. (R)- and (S)-Mosher's esters of ingenamine (1), ingamine A (2) and ingenamine E (11) were prepared according to literature procedures. 10,11 The (R)- and (S)-Mosher esters of cholesterol were prepared in parallel with each derivatization of 1, 2 and 11 as a control for the chirality of the reagents. Detailed NMR analysis of the esters 13a, 13b, 14a, 14b, 15a and 15b using COSY, HMQC, HMBC and difference NOE experiments led to complete assignments of the 1 H NMR spectra of each derivative (see Experimental). The $\Delta\delta$ values ($\Delta\delta = \delta_S - \delta_R$ in Hz) for each proton were calculated (see Experimental) and plotted on the conformational representations of ingenamine-MTPA (13), ingamine A-MTPA (14) and ingenamine E-MTPA (15) shown in Figure 1. Coupling constant analysis and difference NOE results demonstrated that the C7 to C12 piperidine ring in the Mosher esters 13, 14, and 15 was in a boat conformation with H9 and H12' occupying flagpole positions as in the parent compounds 1, 2 and 11. Examination of Dreiding models indicated that there are no steric impediments to the MTPA group adopting the 'ideal conformation' having the trifluoromethyl, ester carbonyl, and carbinol methine proton coplanar in derivatives 13, 14 and 15. As can be seen in Figure 1, when the MTPA plane contains the X (= MTPA) and H groups at C9 as required by the 'ideal conformation', the $\Delta\delta$ values for derivatives 13, 14 and 15 are all positive on one side of the plane and negative on the other side. Following the empirical rule for analyzing the data as put forth by Ohtani et al., ¹⁰ it is apparent that ingenamine (1), ingamine A (2) and ingenamine E (11) have the absolute configurations (2R, 5S, 7S, 8R, 9S) as shown for their MTPA derivatives 13, 14 and 15 in Figure 1. The suite of ingenamine alkaloids represented by ingenamine (1), ingamines A (2) and B (3), keramaphidin B (4), the xestocyclamines A and B, and ingenamines B (8) to F (12) illustrate some of the structural variations that are possible in this family. The only variation observed thus far in the central N1 to C12 tricyclic core is the presence or absence of a hydroxyl functionality at C9. Both the N1 to C7 and the C3 to N11 linear carbon bridges vary in length and position and degree of unsaturation. The greatest range of variation occurs in the C3 to N11 bridge which has eight carbons and one alkene in ingenamine (1), nine carbons and one alkene in ingenamines B (8) and C (i.e. 9), ten carbons and two alkenes in ingenamine D (10) and twelve carbons and three alkenes in ingamines A (2) and B (3). Only eight and twelve carbon N1 to C7 bridges have been identified. An interesting relationship exists between ingamine A (2) and ingenamine E (11) and between the corresponding non-hydroxylated analogs ingamine B (3) and ingenamine F (12). The N1 to C7 bridge in ingamines A (2) and B (3) is identical to the C3 to N11 bridge in ingenamines E (11) and F (12), and the C3 to N11 bridge in ingamines A (2) and B (3) is identical to the N1 to C7 bridge in ingenamines E (11) and F (12). Therefore, in principle ingamines A (2) and B (3) and ingenamines E (11) and F (12) can all arise from a common bis-3-alkylpyridine macrocyclic biogenetic precursor 16. If a partially reduced ring A acts as the diene and a partially reduced ring B acts as the dieneophile in the biological [4 + 2] cyclization reaction proposed by Baldwin and Whitehead (Scheme 1) the skeleton of ingamines A (2) and B (3) is formed. Conversely, if a Figure 1. $\Delta \delta = \delta_S - \delta_R$ (Hz) values for the Mosher esters of ingenamine, ingamine A and ingenamine E. The ¹H NMR data were recorded in CD₂Cl₂ at 500MHz. partially reduced ring A acts as the dieneophile and a partially reduced ring B acts as a diene in the condensation reaction the ingenamine E (11) and F (12) skeleton is formed. Interestingly, the Mosher ester analysis has shown that the absolute configuration of the tricyclic central core of ingamine A (2) is identical to the absolute configuration of the central core of ingenamine E (11). The absolute configurations of ingenamine (1), ingamine A (2) and ingenamine E (11) isolated from X. ingens are antipodal to the absolute configurations reported for manzamines A and B (6) and ircinals A and B (5). However, their configurations are identical to the absolute configurations recently reported for the ircinols A and B (7). The keramaphidin B (4) isolated by Kobayashi et al. from the same Amphimedon sp. that yielded ircinals A and B, manzamines A, B, G and H, and ircinols A and B was reported to be a naturally occurring racemate, while keramaphidin B (4) isolated from X. ingens in the current study was found to be optically active. The structural relationship between the ingenamine, ircinol, ircinal and manzamine alkaloids provides compelling evidence for the Baldwin and Whitehead biogenetic proposal that they all arise from an achiral bis-3-alkyldihydropyridine macrocycle as shown in Scheme 1. It is clear, however, that there are two antipodal series of alkaloids formed via this pathway. One of the enantiomers of keramaphidin B (4) isolated from Amphimedon sp., the ircinals A and B (5), and the manzamines A and B (6) all belong to one configurational series. The other enantiomer of keramaphidin B (4), ircinols A and B (7), ingenamine (1), ingamine A (2) and ingenamine E (11) belong to the other configurational series. According to the Baldwin and Whitehead proposal, the chirality of these alkaloids is established by the biological equivalent of an intramolecular [4 + 2] cycloaddition reaction of an achiral bis-3-alkyldihydropyridine macrocycle. Therefore, it would appear that there are enantiomeric enzymes capable of catalyzing this intramolecular condensation. Table 1: 13C NMR data recorded in MeOH-d4 at 125 MHz | Carbon | Ingenamine | Ingenamine B | Ingenamine C | Ingenamine D | | Ingenamine F | |--------|------------|--------------|--------------|--------------|-------|--------------| | no. | (1) | (8) | acetate (9) | (10) a | (11) | (12) b | | 2 | 65.2 | 65.3 | 65.80 | 66.6 | 63.4 | 64.2 | | 3 | 143.8 | 144.8 | 145.0 | 145.3 | 143.5 | 141.4 | | 4 | 124.0 | 121.2 | 121.1 | 122.8 | 124.5 | 123.3 | | 5 | 35.2 | 35.0 | 35.4 | 36.3 | 35.2 | 37.6 | | 6 | 54.3 | 55.0 | 54.4 | 53.9 | 55.6 | 54.8 | | 7 | 46.9 | 47.8 | 48.0 | 48.0 | 45.8 | 43.6 | | 8 | 53.1 | 52.6 | 50.1 | 54.5 | 52.5 | 42.4 | | 9 | 69.3 | 69.5 | 73.1 | 70.7 | 69.1 | 27.0 | | 10 | 54.7 | 54.7 | 52.4 | 57.8 | 54.2 | 46.9 | | 12 | 51.5 | 50.2 | 51.4 | 56.2 | 51.2 | 50.0 | | 13 | 55.2 | 55.3 | 55.0 | 54.6 | 59.4 | 57.8 | | 14 | 27.1 | 27.1 | 27.0 | 26.8 | 29.5 | 28.4 | | 15 | 27.7 | 27.4 | 27.6 | 27.7 | 129.7 | 128.7 | | 16 | 23.8 | 23.9 | 23.9 | 23.7 | 129.4 | 128.3 | | 17 | 132,4 | 132.5 | 132.5 | 132.5 | 27.2 | 26.3 | | 18 | 131.4 | 131.3 | 131.2 | 131.2 | 128.6 | 127.3 | | 19 | 21.6 | 21.6 | 21.7 | 21.8 | 129.0 | 128.5 | | 20 | 42.9 | 42.6 | 43.4 | 46.1 | 26.8 | 25.5 | | 21 | 56.9 | 57.3 | 57.4 | 58.7 | 129.1 | 127.6 | | 22 | 22.1 | 24.2 | 27.1 | 27.6 | 131.1 | 130.5 | | 23 | 25.7 | 28.4 | 28.4 | 26.8 | 22.9 | 22.1 | | 24 | 26.0 | 27.8 | 130.7 | 130.3 | 40.4 | 38.8 | | 25 | 132.6 | 28.6 | 131.2 | 129.4 | 56.8 | 55.8 | | 26 | 133.1 | 26.3 | 27.5 | 26.9 | 21.8 | 20.4 | | 27 | 26.5 | 132,4 | 28.8 | 129.2 | 27.4 | 26.5 | | 28 | 37.9 | 125.6 | 25.3 | 130.4 | 25.9 | 25.0 | | 29 | | 34.6 | 34.8 | 25.8 | 132.6 | 131.4 | | 30 | | | 172.3 | 37.3 | 133.2 | 132.0 | | 31 | | | 19.8 | | 26.5 | 25.7 | | 32 | | | | | 38.2 | 37.2 | ^a Based on HMQC and HMBC. ^b Recorded in CDCl₃ Table 2: ¹H NMR data recorded in MeOH-d₄ at 500 MHz | Table 2: ¹ H NMR data recorded in MeOH-d ₄ at 500 MHz | | | | | | | | | | |---|-------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-----------------------------------|--|--|--| | Proton
no. | Ingenamine (1) | Ingenamine B (8) | Ingenamine C
acetate (9) | Ingenamine D
(10) | Ingenamine E
(11) | Ingenamine
F (12) ^a | | | | | 2 | 3.14, d(1.3) | 3.12, bs | 3.09, bs | 3.06, bs | 3.03, d(1.5) | 2.90, bs | | | | | 4 | 5.85 d(6.5) | 5.90, d(6.3) | 5.91, dd(6.5, 1.5) | 5.95, bd(6.5) | 5.89, d(6.6) | 5.82, d(6.5) | | | | | 5 | 2.64, m | 2.70 | 2.42 | 2.68, m | 2.62, m | 2.18 | | | | | 6 | 2.84, dd(9.2, 1.9) | 2.91, dd(9.1, 1.8) | 2.88, dd(9.3, 1.8) | 2.86 dd(9.3, 2.2) | 2.99, dd(9.5, 1.9) | 2.98, dd(9.3, 1.7) | | | | | 6' | 1.71, dd(9.2, 2.9) | 1.86, dd(9.1, 2.6) | 1.79, dd(9.3, 2.7) | 1.80, dd(9.3, 2.6) | 1.78, dd(9.5, 2.7) | 1.68, dd(9.3, 2.5) | | | | | 8 | 0.69 dd(10.1, 2.1) | 0.77 dd(9.9, 2.0) | 1.02, dd(9.7, 2.3) | 0.92, dd(8.7, 2.8) | 0.77, dd(9.9, 1.9) | 1.00, dd(12.0, 4.5) | | | | | 9 | 3.27, ddd(11.8,
10.1, 4.8) | 3.32 ddd(11.9,
10.1, 4.7) | 4.57, ddd(11.0,
9.7, 4.7) | 3.41, ddd(14.0,
8.7, 5.0) | 3.27, ddd(11.9,
10.1, 4.7) | 1.41 | | | | | 9' | 10.1; 4.0) | 10.1, 4.1) | 7.7, 1.7 | 0.7, 5.07 | 20,2, 1,1,7 | 1.15, qd(12.5, 3.8) | | | | | 10 | 2.61, dd(12.0, 4.8) | 2.68, dd(12.2, 4.7) | 2.70 dd(11.9, 4.7) | 2.67 | 2.65, dd(12.2, 4.7) | 2.86 | | | | | 10' | 2.46, t(12.0) | 2.57, t(12.2) | 2.49, t(11.5) | 2.13 | 2.53, t(12.0) | 2.64, dt(12.5, 3.0) | | | | | 12 | 2.26 d(10.8) | 2.42, d(11.3) | 2.38, d(11.2) | 2.29, d(12.1) | 2.44, d(11.3) | 2.42 | | | | | 12' | 1.98, d(10.8) | 2.25, d(11.3) | 2.26, d(11.2) | 2.21, d(12.1) | 2.02, d(11.3) | 2.10, d(10.5) | | | | | 13 | 2.97, td(12.6, 5.2) | 2.99, td(12.6, 5.0) | 2.93, td(12.4, 5.1) | 2.92, td(12.4, 5.1) | 2.49, td(10.7, 4.4) | 2.42, td(10.8, 4.3) | | | | | 13' | 2.21, m | 2.30, td(12.6, 4.2) | 2.24 | 2.24 | 2.22, m | 2,21 | | | | | 14 | 1.48 | 1.53 | 1.48 | 1.47 | 2.37 | 2.32 | | | | | 14' | 1.27, m | 1.28 | 1.27, m | 1.27, bd(11.8) | 2.14 | 2.09 | | | | | 15 | 1.58 | 1,60 | 1.58 | 1.58 | 5.37 | 5.34 | | | | | 15' | 1.50 | 1.52 | 1.48 | 1.45 | | | | | | | 16 | 2.41 | 2.40 | 2.40 | 2.39 | 5.52 | 5.50 | | | | | 16' | 1.54 | 1.57 | 1.56 | 1.55 | 3.32 | 5.50 | | | | | 17 | 5.63 | 5.64 | 5.63 | 5.62 | 2.88, dt(15.3, 7.4) | 2.86 | | | | | 17' | 5.05 | 5.04 | 3.03 | 5.02 | 2.78, m | 2.73, dt(14.5, 7.3) | | | | | 18 | 5.63 | 5.64 | 5.63 | 5.59 | 5.37 | 5.37 | | | | | 19 | 2.34 | 2.33 | 2.35 | 2.33 | 5.34 | 5.36 | | | | | 19' | 1.73 | 1.78 | 1.74 | 1.68 | 7.51 | 5.50 | | | | | 20 | 1.82 | 1.78 | 1.83, m | 1.71 | 3.17, td(15.8, 7.5) | 3.11, dt(16.0, 8.0) | | | | | 20' | 1.71 | 1.78 | 1.72 | 1.71 | 2.81, m | 2.81 | | | | | 21 | 3.04, ddd(14.1,
8.2, 6.1) | 2.99 | 2.83, ddd(13.8,
8.2, 3.9) | 2.51 | 5.45 | 5.43 | | | | | 21' | 2.19 | 2.47, dt(14.1, 5.0) | 2.44 | 2.48 | | | | | | | 22 | 1.64 | 1.50 | 1.68, m | 1.58 | 5.48 | 5.55 | | | | | 22' | 1.35 | 1,43 | 1.43, m | 1.45 | 2.10 | | | | | | 23 | 1.48 | 1.39 | 2.25 | 2.24 | 2.34 | 2,23 | | | | | 23' | 1.34 | 1.35 | 1.91, m | 1.96 | 1.82 | 1.84, m | | | | | 24 | 2.18 | 1.40 | 5.39, td(11.0, 4.8) | 5.32 | 1.86 | 1.76, td(12.5, 3.3) | | | | | 24' | 1.95 | 1.40 | 3.37, (4(11.0, 4.0) | 3.32 | 1.59, bt(10.9) | 1.66, td(12.5, 4.5) | | | | | 25 | 5.22, tt(10.8, 2.9) | 1.53 | 5.42, td(10.6, 5.5) | 5.40 | 3.09, dt(14.0, 7.1) | 3.09 | | | | | 25' | 3.22, it(10.0, 2.5) | 1.32 | 3.42, id(10.0, 5.5) | 5.40 | 2.30 | 2.32 | | | | | 26 | 5.36, m | 2.33 | 2.35 | 3.06 | 1.68, m | 1.55, m | | | | | 26' | J.55, M. | 1.79 | 1.78 | 2.53 | 1.37 | 1.40 | | | | | 27 | 2.31 | 5.54 , td(10.8, 4.4) | 1.48 | 5.47 | 1.48, m | 1.44 | | | | | 27' | 2.08 | 2.2., 22(10.0, 7.4) | 1.48 | | 1.36 | 1.32 | | | | | 28 | 2.35 | 5.67, td(10.8, 4.4) | 1.79 | 5.49 | 2.20 | 2.11 | | | | | 28' | 2.28 | 5.07, M(10.0, 7.7) | 1.49 | <u> </u> | 1.97, bd(14.4) | 1.97 | | | | | 29 | 2.20 | 3.09, dd(18.1,10.7) | 2.22 | 2.47 | 5.24, bt(10.6) | 5.23, bt(10.5) | | | | | 29' | | 2.72 | 2.22 | 2.12 | J.2.1, DE(10.0) | 2.23, 54 10.3) | | | | | 30 | | 2.12 | | 2.30 | 5.38 | 5.34 | | | | | 30' | | | | 2.00 | 3.30 | 3.54 | | | | | 31 | | | 2.00, s | 2.00 | 2.32 | 2.22 | | | | | 31' | | | 2.00, 5 | | 2.06, m | 2.09 | | | | | 32 | | | | | 2.38 | 2.34 | | | | | 32' | | | | | 2.18 | 2.14 | | | | | 32 | L | | l | L | J 4.10 | 2.14 | | | | a Recorded in CDCl₃ #### **EXPERIMENTAL** Specimens of Xestospongia ingens were collected by hand using SCUBA on reefs at depths of -15 to -20 m near Sek Point off Madang, Papua New Guinea in 1992. Freshly collected sponge were frozen on site and transported to Vancouver over dry ice. The sponge was identified by Dr. R van Soest. A voucher sample (ZMA 10701) has been deposited at the Zoologisch Museum, University of Amsterdam. Extraction and Isolation of Ingenamine Alkaloids: Specimens (200 g, wet) of Xestospongia ingens were thawed and extracted exhaustively with MeOH (500 mL x 3, each about one day). The MeOH extract was filtered and concentrated in vacuo to give a dark brown aqueous suspension which was then diluted with H2O to 300 mL and partitioned sequentially against hexanes (400 mL x 3) and EtOAc (400 mL x 3). The hexanessoluble fraction (770 mg) was subjected to silica-gel flash chromatography using gradient elution (hexanes/EtOAc 1:9 to 1:1) to give three fractions; A (120 mg, mainly madangamine A⁹), B (290 mg) and C (200 mg) in sequence. Fractions B and C were found to contain mainly ingamine B (3) and ingamine A (2), respectively. The EtOAc-soluble fraction (650 mg) was chromatographed on a Sephadex LH-20 column using MeOH first, and then EtOAc:MeOH:H₂O 40:10:4 as the eluent to afford three fractions: fraction 1 (190 mg), consisting of mainly ingamines A (2) and B (3) plus xestocyclamine B; fraction 2 (440 mg), a very complex mixture of ingenamine type compounds; and fraction 3 (65 mg), mainly ingenamine (1) and the minor component ingenamine E (11). Recycling of fraction 3 via the same column (Sephadex LH-20, EtOAc/MeOH/H₂O 40:10:4) gave pure ingenamine (1) which was in a protonated form (20 mg). Ingenamine F (12) (4 mg) was obtained from fraction 2 (100 mg) by Sephadex LH-20 chromatography (EtOAc/MeOH/H₂O 40:5:2) followed by preparative silica-gel TLC (eluent: EtOAc/MeOH 75:25). Repeated fractionation of fractions 2 and 3 on normal-phase HPLC using an eluent of EtOAc/hexane modified by a small amount of iPr₂NH and/or MeOH gave ingenamine B (8) (25 mg) and keramaphidin B (4) (17 mg), a mixture of xestocyclamine B and ingenamine C (30 mg), ingenamine D (10) (1 mg), ingenamine E (11) (7 mg) and unprotonated ingenamine (1) (25 mg). The mixture of xestocyclamine B and ingenamine C was subjected to repeated recrystallization from MeOH to afford pure xestocyclamine B⁵ (5.7 mg, colorless needles (acetonitrile:MeOH 4:1), mp 151-3°C). Acetylation of the residue from the crystallization mother liquor (23 mg) using 1 mL of pyridine and 1 mL of acetic anhydride at room temperature with stirring overnight and followed by a normal phase HPLC separation (eluent: hexane / EtOAc / iPr2NH / MeOH 97.5:2.5:0.05:0.05) gave pure ingenamine C acetate (9) (7 mg). **Keramaphidin B** (4): Amorphous white solid, $[\alpha]_D + 29.8^\circ$ (c 1.1; MeOH); HREIMS, C₂₆H₄₀N₂ (M+) m/z: 380.319 (ΔM -0.0 mmu); LREIMS m/z (formula, relative intensity); 380 (C₂₆H₄₀N₂, 76), 283 (C₁₉H₂₇N₂, 100), 217 (C₁₄H₂₁N₂, 25), 206 (C₁₄H₂₄N, 27), 192 (C₁₃H₂₂N, 62), 190 (C₁₃H₂₀N₁ 33), 188 (C₁₃H₁₈N, 45), 148 (C₁₀H₁₄N, 27), 134 (C₉H₁₂N, 29), 110 (C₇H₁₂N, 77), 93 (C₆H₇N, 38); ¹H NMR (MeOH-d₄, 500 MHz), δ: 0.98 (ddd, J = 12.5, 5.5, 2.1 Hz, H8), 1.23 (qd, J = 14.0, 4.1 Hz, H9'), 1.27 (m, H14'), 1.44 (m, H23'), 1.49 (m, H22'), 1.50 (m, H9), 1.50, (m, H15'), 1.52 (m, H23), 1.53 (m, H14), 1.56 (m, H16'), 1.61 (m, H15), 1.68 (dd, J = 9.2, 2.6 Hz, H6'), 1.73 (m, H22), 1.75 (2H, m, H20), 1.76 (m, H19'), 2.02 (bd, J = 15.2 Hz, H24'), 2.11 (m, H27'), 2.16 (d, J = 11.6 Hz, H12'), 2.21 (ddd, J = 12.5, 5.2, 1.2 Hz, H13'), 2.26 (m, H24), 2.30 (m, H5), 2.31 (m, H28'), 2.35 (m, H27), 2.38 (m, H19), 2.38 (m, H28), 2.41 (m, H16), 2.52 (ddd, J = 13.5, 7.5, 2.5 Hz, H21'), 2.70 (d, J = 11.6 Hz, H12), 2.88 (m, H10'), 2.89 (dd, J = 9.2, 1.9 Hz, H6), 2.97 (td, J = 13.5, 2.6 Hz, H10), 2.99 (td, J = 12.5, 5.2 Hz, H13), 3.18 (bs, H2), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 2.99 (td, J = 12.5, 5.2 Hz, H13), 3.18 (bs, H2), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 2.99 (td, J = 12.5, 5.2 Hz, H13), 3.18 (bs, H2), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 2.99 (td, J = 12.5, 5.2 Hz, H13), 3.18 (bs, H2), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 2.99 (td, J = 13.5, 5.2 Hz, H13), 3.28 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 2.99 (td, J = 13.5, 5.2 Hz, H13), 3.18 (bs, H2), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 2.99 (td, J = 13.5, 5.5 Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 3.24 (dt, J = 13.5, 7.5Hz, H21), 5.28(tt, J = 10.8, 2.8 Hz, H20), 3.24 (dt, J = 13.5, 7.5Hz, H21), H25), 5.41 (m, H26), 5.65 (m, H17), 5.65(m, H18), 5.91 (d, J = 6.4 Hz, H4); 13 C NMR (MeOH-d₄, 125 MHz), δ : 20.87 (C22), 21.56 (C19), 23.79 (C16), 26.13 (C24), 26.47 (C27), 26.81 (C9), 27.06 (C14), 27.06 (C23), 27.47 (C15), 37.59 (C28), 38.76 (C5), 41.77 (C20), 44.06 (C8), 44.95 (C7), 48.79 (C10), 50.76 (C12), 54.31 (C6), 55.11 (C13), 56.88 (C21), 64.63 (C2), 125.0 (C4), 131.0 (C18), 132.6 (C25), 132.8 (C17), 133.4 (C26), 142.8 (C3). Ingenamine B (8): obtained as a white powder; $[\alpha]_D = +22.4^{\circ}$ (c 0.25, MeOH); EIHRMS M⁺, m/z 410.3299 (C₂₇H₄₂N₂O, Δ M 0.2 mmu); EILRMS m/z (formula, relative intensity %), 410 (C₂₇H₄₂N₂O 100), 393 (C₂₇H₄₁N₂ 30), 392 (C₂₇H₄₀N₂ 27), 391 (C₂₇H₃₉N₂ 37), 379 (C₂₆H₃₉N₂ 56), 367 (C₂₅H₃₇NO 19), 295 (C₂₀H₂₇N₂ 61), 281 (C₁₉H₂₅N₂ 93), 231 (C₁₅H₂₃N₂ 30), 202 (C₁₄H₂₀N 34), 190 (C₁₃H₂₀N 24), 189 (C₁₃H₁₉N 19), 188 (C₁₃H₁₈N 20), 146 (C₁₀H₁₂N 30), 132 (C₉H₁₀N 33), 120 (C₈H₁₀N 17), 106 (C₇H₈N 22), 93 (C₆H₇N 43), 79 (C₆H₇ 19), 67 (C₅H₇ 27), 55 (C₃H₅N 26); ¹H NMR (MeOH-d₄, 500 MHz) and ¹³C NMR (MeOH-d₄, 125 MHz) are listed in Tables 1 and 2. Ingenamine C acetate (9): obtained as a colorless glass; $[\alpha]_D = +41.6^{\circ}$ (c 0.09, MeOH); EIHRMS M⁺, m/z 452.3406 (C₂₉H₄₄N₂O₂, Δ M 0.3 mmu); EILRMS m/z (formula, relative intensity %), 452 (C₂₉H₄₄N₂O₂ 49), 409 (C₂₇H₄₁N₂O 10), 393 (C₂₇H₄₁N₂ 100), 379 (C₂₆H₃₉N₂ 96), 297 (C₂₀H₂₉N₂ 36), 295 (C₂₀H₂₅N₂ 29), 283 (C₁₉H₂₇N₂ 26), 281 (C₁₉H₂₅N₂ 34), 190 (C₁₃H₂₀N 22), 189 (C₁₃H₁₉N 38) 188 (C₁₃H₁₈N 29), 174 (C₁₂H₁₆N 24), 162 (C₁₁H₁₆N 22), 148 (C₁₀H₁₄N 30), 134 (C₉H₁₂N 37), 120 (C₈H₁₀N 42), 107 (C₇H₉N 47), 106 (C₇H₈N 46), 93 (C₆H₇N 75), 79 (C₆H₇ 40), 67 (C₅H₇ 53), 55 (C₄H₇ 33); ¹H NMR (MeOH-d₄, 500 MHz) and ¹³C NMR (MeOH-d₄, 125 MHz) are listed in Tables 1 and 2. Ingenamine D (10): obtained as a colorless glass; EIHRMS M⁺, m/z 422.3292 ($C_{28}H_{42}N_{2}O$, ΔM -0.5 mmu); EILRMS m/z (formula, relative intensity %), 422 ($C_{28}H_{42}N_{2}O$ 47), 405 ($C_{28}H_{41}N_{2}$ 15), 391 ($C_{27}H_{39}N_{2}$ 40), 321 ($C_{22}H_{29}N_{2}$ 11), 307 ($C_{21}H_{27}N_{2}$ 17), 293 ($C_{20}H_{25}N_{2}$ 30), 216 ($C_{15}H_{22}N$ 27), 214 ($C_{15}H_{20}N$ 29), 188 ($C_{13}H_{18}N$ 31), 162 ($C_{11}H_{16}N$ 20), 148 ($C_{10}H_{14}N$ 19), 134 ($C_{9}H_{12}N$ 33), 120 ($C_{8}H_{10}N$ 26), 107 ($C_{7}H_{9}N$ 29), 93 ($C_{6}H_{7}N$ 100), 79 ($C_{6}H_{7}$ 34), 67 ($C_{5}H_{7}$ 43), 55 ($C_{4}H_{7}$ 33); ¹H NMR (MeOH-d₄, 500 MHz) and 13C NMR (MeOH-d₄, 125 MHz) are listed in Tables 1 and 2. Ingenamine E (11): obtained as colorless glass; $[α]_D = -23.8^\circ$ (c 0.062, MeOH); EIHRMS M⁺, m/z 448.3458 (C₃₀H₄₄N₂O, ΔM 0.5 mmu); EILRMS m/z (formula, relative intensity %), 448 (C₃₀H₄₄N₂O 100), 431 (C₃₀H₄₄N₂O 35), 417 (C₂₉H₄₁N₂ 34), 405 (C₂₈H₄₁N₂ 23), 335 (C₂₃H₃₁N₂ 26), 281 (C₁₉H₂₅N₂ 58), 267 (C₁₈H₂₃N₂ 51), 242 (C₁₇H₂₄N 26), 217 (C₁₄H₂₁N₂ 31), 188 (C₁₃H₁₈N 51), 148 (C₁₀H₁₄N 18), 146 (C₁₀H₁₂N 23), 134 (C₉H₁₂N 25), 120 (C₈H₁₀N 19), 107 (C₇H₉N 45), 93 (C₆H₇N 81), 79 (C₆H₇ 39), 67 (C₅H₇ 36), 55 (C₄H₇ 27); ¹H NMR (MeOH-d₄, 500 MHz) and 13C NMR (MeOH-d₄, 125 MHz) are listed in Tables 1 and 2. Ingenamine F (12): obtained as a colorless glass; $[α]_D = -64.3^\circ$ (c 0.062 MeOH); EIHRMS M⁺, m/z 432.3497 (C₃₀H₄₄N₂, ΔM -0.8 mmu); EILRMS m/z (formula, relative intensity %), 432 (C₃₀H₄₄N₂ 92), 417 (C₂₉H₄₁N₂ 13), 391 (C₂₇H₃₉N₂ 20), 351 (C₂₄H₃₅N₂ 12), 337 (C₂₃H₃₃N₂ 27), 311 (C₂₁H₃₁N₂ 13), 297 (C₂₀H₂₉N₂ 21), 283 (C₁₉H₂₇N₂ 100), 217 (C₁₄H₂₁N₂ 31), 192 (C₁₃H₂₂N 28), 190 (C₁₃H₂₀N 17), 188 (C₁₃H₁₈N 18), 174 (C₁₂H₁₆N 10), 160 (C₁₁H₁₄N 11), 110 (C₇H₁₂N 53), 107 (C₇H₉N 35), 93 (C₆H₇N 35), 79 (C₆H₇ 34), 67 (C₅H₇ 36), 55 (C₄H₇ 27); ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) are listed in Tables 1 and 2. ### Preparation and Purification of Mosher Esters. To a solution of 3.5 mg of ingenamine (1) and 6 mg of 4-(dimethylamino)pryridine (DMAP) in 1 mL of methylene chloride was added 8 μL of (R)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (MTPA-Cl) prepared according to the literature procedure. ^{10,11} After the mixture was stirred at room temperature for about 4 hours, 2 drops of triethylamine was added. The reaction mixture was allowed to stir overnight at room temperature during which time the solution gradually became pale yellow. Evaporation of the solvent under reduced pressure gave a residue which was washed by water to give the crude (S)-Mosher ester (5 mg). Further purification by normal phase HPLC (eluent: 90:10:0.1 hexane/EtOAc/iPr₂NH) yielded pure (S)-MTPA ester of ingenamine (13a) (3.5 mg). Following the identical procedure with (S)-MTPA-Cl gave the (R)-Mosher ester of ingenamine (13b). The (R)- and (S)-Mosher esters of ingamine A (14a and 14b) and ingenamine E (15a and 15b) were prepared as described. The Mosher esters of ingamine A and ingenamine E were purified by normal phase HPLC (14a and 14b eluent: 95:5:0.1 hexane/EtOAc/iPr₂NH; 15a and 15b eluent: 92:8:0.1 hexane/EtOAc/iPr₂NH). - (S)-MTPA-Ingenamine (13a): obtained as a white glass; 1 H NMR (CD₂Cl₂, 500 MHz) δ ($\Delta\delta$ in Hz, proton number) 3.09 (-10, H2), 5.80 (-20, H4), 2.20 (-110, H5), 2.74 (-50, H6), 1.63 (-40, H6'), 1.07 (-50, H8), 4.81 (-20, H9), 2.91 (+35, H10), 2.39 (+75, H10'), 2.29 (0, H12), 2.21 (+15, H12'), 2.85 (-10, H13), 2.23 (0, H13'), 1.44 (0, H14), 1.24 (-15, H14'), 1.58 (-10, H15), 1.37 (-15, H15'), 2.32 (-10, H16), 1.55 (-15, H16'), 5.64 (0, H17), 5.62 (0, H18), 2.27 (-10, H19), 1.61 (-20, H19'), 1.63 (-25, H20), 1.63 (-25, H20'), 2.77 (+65, H21), 2.24 (+30, H21'), 1.54 (+25, H22), 1.37 (+20, H22'), 1.52 (+10, H23), 1.33 (0, H23'), 2.07 (+15, H24), 2.01 (0, H24'), 5.42 (0, H25), 5.48 (0, H26), 2.24 (+10, H27), 2.20 (-10, H27'), 2.38 (+10, H28), 2.22 (0, H28'), 7.50 (ArH), 7.43 (ArH), 7.42 (ArH), 7.43 (ArH), 7.50 (ArH), 3.52 (MeO); HREIMS, C36H47N2O3F3 (M+) m/z: 612.3543 (Δ M 0.5 mmu). - (R)-MTPA-Ingenamine (13b): obtained as a white glass; ¹H NMR (CD₂Cl₂, 500 MHz) δ 3.11 (H2), 5.84 (H4), 2.42 (H5), 2.84 (H6), 1.70 (H6'), 1.17 (H8), 4.85 (H9), 2.84 (H10), 2.24 (H10'), 2.29 (H12), 2.18 (H12'), 2.87 (H13), 2.23 (H13'), 1.44 (H14), 1.27 (H14'), 1.60 (H15), 1.40 (H15'), 2.34 (H16), 1.58 (H16'), 5.64 (H17), 5.62 (H18), 2.29 (H19), 1.65 (H19'), 1.68 (H20), 1.68 (H20'), 2.64 (H21), 2.18 (H21'), 1.49 (H22), 1.33 (H22'), 1.50 (H23), 1.33 (H23'), 2.04 (H24), 2.01 (H24'), 5.42 (H25), 5.48 (H26), 2.22 (H27), 2.22 (H27'), 2.36 (H28), 2.22 (H28'), 7.49 (ArH), 7.43 (ArH), 7.42 (ArH), 7.43 (ArH), 7.49 (ArH), 3.52 (MeO); HREIMS, C36H47N2O3F3 (M+) m/z: 612.3544 (ΔM 0.5 mmu). - (S)-MTPA-Ingamine A (14a): obtained as a white glass; 1 H NMR (CD₂Cl₂, 500 MHz) δ ($\Delta\delta$ in Hz, proton number) 3.08 (-10, H2), 5.88 (-25, H4), 2.21 (-120, H5), 2.79 (-45, H6), 1.68 (-40, H6'), 1.09 (-40, H8), 4.77 (-10, H9), 2.85 (+35, H10), 2.74 (+95, H10'), 2.38 (+10, H12), 2.21 (0, H12'), 2.86 (-10, H13), 2.23 (0, H13'), 1.47 (0, H14), 1.26 (0, H14'), 1.59 (0, H15), 1.43 (-20, H15'), 2.30 (-10, H16), 1.58 (0, H16'), 5.64 (0, H17), 5.63 (0, H18), 2.23 (-15, H19), 1.66 (-10, H19'), 1.85 (-10, H20), 1.64 (-30, H20'), 2.58 (+25, H21), 2.54 (+25, H21'), 2.28 (+20, H22), 2.26 (+10, H22'), 5.35 (0, H23), 5.50 (0, H24), 2.93 (+10, H25), 2.73 (-25, H25'), 5.44 (0, H26), 5.44 (0, H27), 3.01 (-10, H28), 2.78 (0, H28'), 5.44 (0, H29), 5.49 (0, H30), 2.40 (0, H31), 2.20 (-20, H31'), 2.34 (0, H32), 2.05 (0, H32'), 7.51 (ArH), 7.43 (ArH), 7.42 (ArH), 7.43 (ArH), 7.51 (ArH), 3.53 (MeO); HREIMS, C40H51N2O3F3 (M+) m/z: 664.3850 (Δ M -0.2 mmu). - (R)-MTPA-Ingamine A (14b): obtained as a colorless glass; ¹H NMR (CD₂Cl₂, 500 MHz) δ 3.10 (H2), 5.93 (H4), 2.45 (H5), 2.88 (H6), 1.76 (H6'), 1.17 (H8), 4.79 (H9), 2.78 (H10), 2.55 (H10'), 2.36 (H12), 2.21 (H12'), $2.88 \ (H13), 2.23 \ (H13'), 1.47 \ (H14), 1.26 \ (H14'), 1.59 \ (H15), 1.47 \ (H15'), 2.32 \ (H16), 1.58 \ (H16'), 5.64 \ (H17), 5.63 \ (H18), 2.26 \ (H19), 1.68 \ (H19'), 1.87 \ (H20), 1.70 \ (H20'), 2.53 \ (H21), 2.49 \ (H21'), 2.24 \ (H22), 2.24 \ (H22'), 5.35 \ (H23), 5.50 \ (H24), 2.91 \ (H25), 2.78 \ (H25'), 5.44 \ (H26), 5.44 \ (H27), 3.03 \ (H28), 2.78 \ (H28'), 5.44 \ (H29), 5.49 \ (H30), 2.40 \ (H31), 2.24 \ (H31'), 2.34 \ (H32), 2.05 \ (H32'), 7.50 \ (ArH), 7.43 \ (ArH), 7.43 \ (ArH), 7.50 \ (ArH), 3.53 \ (MeO); HREIMS, C40H51N2O3F3 \ (M+) m/z: 664.3852 \ (\Delta M \ 0.1 \ mmu).$ (S)-MTPA-Ingenamine E (15a): obtained as a colorless glass; 1 H NMR (CD₂Cl₂, 500 MHz) δ ($\Delta\delta$ in Hz, proton number) 2.98 (-10, H2), 5.85 (0, H4), 2.18 (-100, H5), 2.90 (-45, H6), 1.68 (-45, H6'), 1.13 (-50, H8), 4.81 (0, H9), 2.91 (+35, H10), 2.46 (+70, H10'), 2.31 (0, H12), 2.23 (0, H12'), 2.45 (-10, H13), 2.20 (-10, H13'), 2.29 (0, H14), 2.10 (-10, H14'), 5.37 (0, H15), 5.51 (0, H16), 2.84 (0, H17), 2.79 (0, H17'), 5.37 (0, H18), 5.38 (0, H19), 3.15 (0, H20), 2.78 (0, H20'), 5.43 (0, H21), 5.38 (-10, H22), 2.26 (-15, H23), 1.72 (-20, H23'), 1.73 (-45, H24), 1.44 (-40, H24'), 2.78 (+50, H25), 2.26 (+30, H25'), 1.54 (+20, H26), 1.38 (+25, H26'), 1.50 (0, H27), 1.32 (0, H27'), 2.06 (0, H28), 2.01 (0, H28'), 5.41 (0, H29), 5.44 (0, H30), 2.22 (0, H31), 2.22 (0, H31'), 2.34 (-10, H32), 2.12 (0, H32'), 7.50 (ArH), 7.43 (ArH), 7.43 (ArH), 7.43 (ArH), 7.50 (ArH), 3.53 (MeO); HREIMS, C40H51N2O3F3 (M+) m/z: 664.38501 (Δ M -0.2 mmu). (R)-MTPA-Ingenamine E (15b): obtained as a colorless glass; ¹H NMR (CD₂Cl₂, 500 MHz) δ 3.00 (H2), 5.85 (H4), 2.38 (H5), 2.99 (H6), 1.76 (H6'), 1.23 (H8), 4.81 (H9), 2.84 (H10), 2.32 (H10'), 2.31 (H12), 2.23 (H12'), 2.47 (H13), 2.22 (H13'), 2.29 (H14), 2.12 (H14'), 5.37 (H15), 5.51 (H16), 2.84 (H17), 2.79 (H17'), 5.37 (H18), 5.38 (H19), 3.15 (H20), 2.78 (H20'), 5.43 (H21), 5.40 (H22), 2.29 (H23), 1.76 (H23'), 1.82 (H24), 1.52 (H24'), 2.68 (H25), 2.20 (H25'), 1.50 (H26), 1.33 (H26'), 1.50 (H27), 1.32 (H27'), 2.06 (H28), 2.01 (H28'), 5.41 (H29), 5.44 (H30), 2.22 (H31), 2.22 (H31'), 2.36 (H32), 2.12 (H32'), 7.49 (ArH), 7.43 (ArH), 7.43 (ArH), 7.43 (ArH), 7.49 (ArH), 3.52 (MeO); HREIMS, C40H51N2O3F3 (M+) m/z: 664.38435 (ΔM -0.8 mmu). ## **ACKNOWLEDGMENTS** Financial support was provided by NSERC, the National Cancer Institute of Canada, and American Cyanamid. The authors would like to thank Mike Le Blanc and Dr. Mike Huber for assisting the collection of X. ingens and Dr. R. van Soest for identifying the sponge. #### REFERENCES - 1. Kong, F.; Andersen, R.J.; Allen, T.M. Tetrahedron Lett. 1994, 35, 1643-46. - 2. Kong, F.; Andersen, R.J.; Allen, T.M. Tetrahedron 1994, 50, 6137-44. - 3. Kobayashi, J.; Tsuda, M.; Kawasaki, N.; Matsumoto, K.; Adachi, T. Tetrahedron Lett. 1994, 35, 4383-86. - Rodriguez, J.; Peters, B.M.; Kurz, L.; Schatzman, R.C.; McCarley, D.; Lou, L.; Crews, P. J. Am. Chem. Soc. 1993, 115, 10436-7. - 5. Rodriguez, J.; Crews, P. Tetrahedron Lett. 1994, 35, 4719-22. - 6. Baldwin, J.E.; Whitehead, R.C. Tetrahedron Lett. 1992, 33, 2059-2062. - 7. Kondo, K.; Shigemori, H.; Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Org. Chem. 1992, 57, 2480-3. - 8. Tsuda, M. Kawasaki, N.; Kobayashi, J. Tetrahedron 1994, 50, 7957-60. - 9. Kong, F.; Andersen, R.J.; Allen, T.M. J. Am. Chem. Soc. 1994, 116, 6007-8 - 10. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-96. - 11. Dale, J.A.; Dull, D.L.; Mosher, H.S. J. Org. Chem. 1969, 34, 2543.